
Tammy Dahlgren
with

Tom Epperly and Gary Kumfert
Center for Applied Scientific Computing

Common Component Architecture Working Group
April 10, 2003

Babel/SIDL
Design by Contract: Status

This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-PRES-152674

TLD 2CASC

Overview

Basic Constructs
Impact on Babel/SIDL
Status of Phase I
Benefits
Future Work

TLD 3CASC

The SIDL grammar supports optional
assertion and sequencing specifications.

Packages & Versions
Interfaces & Classes
Inheritance Model
Methods
Method Modifiers
Intrinsic Data Types
Parameter Modes
And more…

Optional
specifications
added here

TLD 4CASC

Three classic assertion mechanisms
supported in the interface descriptions.

unchanging properties of instances of a class
must be true upon instance creation and

preserved by all routines before and after every
invocation

Invariant

effects of a method and results it will return
must be true after invocation

Postcondition

when it is valid to invoke a method
must be true prior to invocation

Precondition

Specify…Type

Plus method call invocation sequencing!

TLD 5CASC

Method call sequencing enforcement is
provided by Babel using object states.

interface Vector {
states { uninitialized, initialized[final] };

void setData (in double data)
require in uninitialized;

ensure now_ready : in initialized;

…

Vector.sidl

Default initial state. Explicit final state.

Optional assertion label.

Transition to initialized is automatic if
library call is successful and all (other)
postconditions and invariants met.

TLD 6CASC

Pre- and post-conditions are typically
used to constrain arguments and results.

interface Vector {
states { uninitialized, initialized[final] };
…
Vector axpy (in Vector a, in Vector x)

require in initialized; a != NULL; x != NULL;
ensure result_not_null : result != NULL;

double norm ()
require object_is_initialized : in initialized;
ensure result >= 0.0; is pure;

…

Vector.sidl

Default initial state. Explicit final state.

An exception is raised if
either preconditions or
postconditions unmet.

Attributes of instance will not be changed.

Note: Argument a is vector instead of scalar for illustration purposes only.

TLD 7CASC

A number of additions to the original
SIDL grammar were made.

Clauses states, invariant, require, require else,
ensure, ensure then

Conditional expressions
—Logical implies, or, xor, and
—Relational ==, !=; <, <=, >=, >
—Shift <<, >>
—Additive +, -
—Multiplicative *, /, mod, rem
—Unary +, -, ~, not, in, is
—Postfix method call
—Logical grouping ()

Terminals boolean, double, float, integer1, long1,
character, string, identifier

Literal keywords true, false, null, result, pure
1Decimal, Hexadecimal, and Octal.

Added for
inheritance.

TLD 8CASC

Optional object states and invariants
added to classes and interfaces.

Class ::= [abstract] class name
[extends scoped-class-name]
[implements-all scoped-interface-name-list]
{ [ObjectStates] [Invariants]
class-methods-list

} [;]

Interface ::=
interface name
[extends scoped-interface-name-list]
{ [ObjectStates] [Invariants]

methods-list
} [;]

TLD 9CASC

Object states definition is used to specify
list of valid states.
ObjectStates ::= states {

state-1 [initial | final]
[, state-2 [initial | final]]
…
[, state-n [initial | final]]
} [;]

Explicit final state.

states { uninitialized, initialized[final] };

Default final state is
last item in list.

Default initial state
is first item in list.

TLD 10CASC

Invariant definition is used to specify
unchanging properties of objects.
Invariants ::= invariant AssertionList;

AssertionList ::= [label-1 :] AssertionExpression-1;
[[label-2 :] AssertionExpression-2;]
…
[[label-n :] AssertionExpression-n;]

invariant {non-negative : entriesAreNonNegative()};

An “is pure” method must be specified
elsewhere in this interface.

Optional assertion label
for debugging messages.

TLD 11CASC

Method definitions allow specification of
pre- and post-conditions.

ClassMethod ::= [(abstract | final | static)]
Method

Method ::= (void | [copy] Type) name [extension]
([ArgumentList])
[local | oneway]
[throws ScopedExceptionList]
[Requires] [Ensures] ;

Requires ::= require [else] AssertionList ;

Ensures ::= ensure [then] AssertionList ;

TLD 12CASC

The modifications had a significant
impact on the grammar and symbol table.

Added 5 elements (↑ 22%)
Modified 3 elements

XML DTD

Added 17 classes (↑ 77%)
Modified 4 classes

Symbol Table

Added
—42 terminal symbols/lexical tokens (↑ 91%)
—21 productions (↑ 140%)

Modified 3 productions

SIDL
Grammar

ImpactArea

TLD 13CASC

Expanded glue code generated from
enhanced interface descriptions.

Application

Impls

Stubs

Skels

IORs

interface
description

Enforcement
code added here.

In SIDL or XML.

TLD 14CASC

The generated checks added to the IOR
files.

Vector.sidl

VectorApp.c

Vector_IOR.c

Vector_IOR.h

Vector_Skel.c

Vector_Impl.h

Vector_Impl.c

Vector_Stub.c

Vector.h

TLD 15CASC

Five basic execution paths available
through the IOR.

Call

Preconditions

Preconditions

Postconditions

ReturnLibrary
method

1*

2*

3

Invariants;
Preconditions

Invariants;
Postconditions

4

*Method call sequencing enforcement cannot be supported.

Invariants Invariants
5*

TLD 16CASC

There are still several features that need
to be completed/addressed.

DTD/XML support
Assertion enforcement options
—Dynamic switching basis

–Class, object, method, etc.
—Assertion type combinations

–Preconditions only, pre & post, invariants, etc.
—Assertion expression evaluation levels

–State checks only, cheap only, etc.
Generated code

TLD 17CASC

Benefits of including these contracts in
Babel/SIDL include…

Better designs and documentation
—Behavior and call ordering more explicit

Improved debugging and reliability
—Runtime checking of consistency between

specifications and code
—Runtime checking of client call ordering

Better support for reuse
Supported regardless of native support in the
underlying implementation language

TLD 18CASC

Future work focuses on adding and/or
exploring additional features such as…

Terminals
— float and double complex
—non-primitive SIDL types (e.g., arrays)

Operation: power x^y
Literal keyword: old

— Pre-method state?

— Guarded postconditions associated with superclasses
(old precondition) implies original_postcondition

Assertion exception policies
Domain-specific features – to be determined

TLD 19CASC

An assessment of your level of interest
and anticipated usefulness is needed.

Is this capability of interest to you? Why or why
not?

Do you anticipate adopting this at some point?
If so, within what context?

Thank You!

